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Abstract In this paper, we first establish some existence theorems of systems of genera-
lized vector equilibrium problems. From these results, we obtain new variants of Ekeland’s
variational principle in a Hausdorff t.v.s., a minimax theorem and minimization theorems.
Some applications to the existence theorem of systems of semi-infinite problem, a variant of
flower petal theorem and a generalization of Schauder’s fixed point theorem are also given.
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1 Introduction

The celebrated variational principle due to Ekeland [10] is an important tool in various fields
of applied mathematical analysis and nonlinear analysis. Generalizations and variants of the
Ekeland’s variational principle were developed by several authors in different directions in
the past; see [7, 8, 14–19, 21, 27–29, 32–34] and references therein. It is well-known that the
original Ekeland’s variational principle (in short EVP) [11–13, 19, 28, 34] is equivalent to
the Caristi’s fixed point theorem [5, 33], to the Takahashi’s nonconvex minimization theorem
[33], to the drop theorem [18, 30], and to the flower petal theorem [18, 30].

Let X be a nonempty subset of a topological space and f : X × X → R be a function
with f (x, x) ≥ 0 for all x ∈ X. Then, the scalar equilibrium problem is to find x̄ ∈ X

such that f (x̄, y) ≥ 0 for all y ∈ X. The equilibrium problem was extensively investigated
and generalized to the vector equilibrium problems for single-valued or multivalued maps
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and contains optimization problems, variational inequalities problems, the Nash equilibrium
problems, fixed point problems, complementary problems, bilevel problems and semi-infinite
problems as special cases and applications; see [2, 4, 6, 13, 20, 22–25, 31] and references
therein.

Till now, to our knowledge, almost all generalizations and applications on EVP are es-
tablished on complete metric spaces or Banach spaces (if the convexity assumptions on
sets or functions are needed). In this paper, we establish a variant of EVP on a topological
vector space (in short t.v.s.) which is proved by an existence theorem of equilibrium pro-
blem. In our new variants of EVP, the functions we considered does not assume to be proper
and bounded from below and we use quasi-distances instead of metrics (even other weakly
(quasi-)metrics). Our variants of EVP are quite different from [7, 14–17, 34]. We give some
applications to extend Schauder’s fixed point theorem and obtain some common fixed point
theorems. We also apply our variants of EVP to optimizational problem and give some equi-
valence relations between EVP, common fixed point theorem, maximal element theorem and
minimization theorem.

The paper is divided into six sections. In Sect. 3, we first study a systems of generalized
vector quasi-equilibrium problem, from which we establish some new variants of EVP in
a Hausdorff t.v.s in Sect. 4. Our results and methods are quite different from [7, 8, 14–19,
21, 27–29, 32–34]. In Sect. 5, we establish some equivalent formulations of our theorems.
Finally, in Sect. 6, we give some applications to study systems of semi-infinite problems,
a variant of flower petal theorem, a generalization of Schauder’s fixed point theorem and a
minimax theorem. Our techniques and some results are quite original in the literatures.

2 Preliminaries

Throughout this paper, we denote the set of real numbers by R. Let A and B be nonempty
sets. A multivalued map T : A � B is a function from A to the power set 2B of B. We denote
T (A) = ⋃{T (x) : x ∈ A} and let T − : B � A be defined by the condition that x ∈ T −(y)

if and only if y ∈ T (x). Let X and Y be topological spaces. A multivalued map T : X � Y

is said to be (i) upper semi-continuous (in short u.s.c.) at x ∈ X if for every open set V in Y

with T (x) ⊂ V , there exists an open neighborhood U(x) of x such that T (x′) ⊂ V for all
x′ ∈ U(x); (ii) lower semi-continuous (in short l.s.c.) at x ∈ X if for every open set V in Y
with T (x)

⋂
V �= ∅, there exists an open neighborhood U(x) of x such that T (x′)

⋂
V �= ∅

for all x′ ∈ U(x); (iii) u.s.c. (resp. l.s.c.) on X if T is u.s.c. (resp. l.s.c.) at every point of X;
(iv) closed if GrT = {(x, y) : x ∈ X, y ∈ T (x)} is closed in X × Y . (v) compact if there
exists a compact set K such that T (X) ⊆ K .

Let Z be a real t.v.s. with zero vector θ , D a proper convex cone in Z and A ⊆ Z. A point
ȳ ∈ A is called a vectorial minimal point of A if for any y ∈ A, y − ȳ /∈ −D \ {θ}. The set
of vectorial minimal point of A is denoted by MinDA. The convex hull of A and the closure
of A are denoted by coA and clA, respectively.

Definition 2.1 Let X be a nonempty convex subset of a vector space E, Y be a nonempty
convex subset of a vector space V and Z be a real t.v.s. Let F : X × Y � Z and C : X � Z

be multivalued maps such that for each x ∈ X, C(x) is a nonempty closed convex cone.
For each fixed x ∈ X, y � F(x, y) is called C(x)-quasiconvex if for any y1, y2 ∈ Y and
λ ∈ [0, 1], we have either

F(x, y1) ⊆ F(x, λy1 + (1 − λ)y2) + C(x)
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or

F(x, y2) ⊆ F(x, λy1 + (1 − λ)y2) + C(x).

The following Lemmas and theorems are crucial in this paper.

Lemma 2.1 [1, 35] Let X and Y be Hausdorff topological spaces, T : X � Y be a multi-
valued map. Then T is l.s.c. at x ∈ X if and only if for any y ∈ T (x) and for any net {xα} in
X converging to x, there exists a subnet {xφ(λ)}λ∈� of {xα} and a net {yλ}λ∈� with yλ → y

such that yλ ∈ T (xφ(λ)) for all λ ∈ �.

Lemma 2.2 [26] Let Z be a Hausdorff t.v.s. and C be a closed convex cone in Z. If A is a
nonempty compact subset of Z, then MinCA �= ∅.

Lemma 2.3 [3] Let X and Y be Hausdorff topological spaces, T : X � Y be a multivalued
map.

(i) If T is an u.s.c. multivalued map with closed values, then T is closed;
(ii) If Y is a compact space and T is closed, then T is u.s.c.;

(iii) If X is compact and T is an u.s.c. multivalued map with compact values, then T (X)

is compact.

Theorem 2.1 [9] Let I be any index set. Let {Xi}i∈I be a family of nonempty convex subsets,
where each Xi is contained in a Hausdorff t.v.s. Ei . For each i ∈ I , let Si : X = ∏

i∈I Xi �
Xi be a multivalued map such that

(i) for each x = (xi)i∈I ∈ X, xi /∈ coSi(x);
(ii) for each yi ∈ Xi , S−

i (yi) is open in X;
(iii) there exist a nonempty compact subset K of X and a nonempty compact convex subset

Mi of Xi for all i ∈ I such that for each x ∈ X \ K , there exists j ∈ I such that
Mj ∩ Sj (x) �= ∅.

Then there exists x̄ ∈ X such that Si(x̄) = ∅ for all i ∈ I .

3 Existence theorems of systems of generalized vector equilibrium problems

The following existence theorem of systems of equilibrium problems is one of the main results
of this paper. It has many applications in variants of EVP in a Hausdorff t.v.s., semi-infinite
problems, fixed point theorems, minimax theorems, and optimization problems.

Theorem 3.1 Let I be any index set. For each i ∈ I , let Xi be a nonempty subset of a t.v.s.
Ei , Yi be a nonempty closed convex subset of a Hausdorff t.v.s. Vi , Ui and Zi be real t.v.s.
Let X = ∏

i∈I Xi and Y = ∏
i∈I Yi . For each i ∈ I , let Ci : Y � Ui , Di : Y � Zi ,

Fi : X × Y � Ui and Gi : Y × Yi � Zi be multivalued maps with nonempty values and
Ti: Y � Yi be a multivalued map with nonempty convex values. Let u ∈ X. For each i ∈ I ,
let Wi = {y ∈ Y : Fi(u, y) ⊆ Ci(y)}, Hi = {yi ∈ Yi: Fi(u, y) ⊆ Ci(y) for y = (yi)i∈I ∈ Y }
and let Ai : Y � Yi be defined by Ai(y) = {zi ∈ Yi : Gi(y, zi) � Di(y)}. For each i ∈ I ,
suppose that the following conditions are satisfied:

(i) Wi is a nonempty closed subset of Y ;
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(ii) for each y = (yi)i∈I ∈ Y , Gi(y, yi) ⊆ Di(y);
(iii) for each y ∈ Y , Ti(y) ⊆ Hi and Ai(y) is convex;
(iv) for each zi ∈ Yi , T −

i (zi) and A−
i (zi) are open in Y ;

(v) there exist a nonempty compact subset K of Y and a nonempty compact convex subset
Mi of Yi for each i ∈ I such that for each y ∈ Y \ K there exist j ∈ I and
zj ∈ Mj ∩ Tj (y) such that Gj(y, zj ) � Dj(y).

Then, there exists v ∈ Y such that for each i ∈ I , Fi(u, v) ⊆ Ci(v) and Gi(v, yi) ⊆ Di(v)

for all yi ∈ Ti(v).

Proof For each i ∈ I , define a multivalued map ϕi : Y � Yi by

ϕi(y) =
{

Ti(y) ∩ Ai(y), if y ∈ Wi

Ti(y), if y ∈ Y \ Wi.

Then for each i ∈ I , yi /∈ coϕi(y) for all y = (yi)i∈I ∈ Y . Indeed, for each i ∈ I , if y ∈ Wi ,
then ϕi(y) = Ti(y) ∩ Ai(y) ⊆ Ai(y). By (iii), we have coϕi(y) ⊆ Ai(y). By (ii), we have
yi /∈ Ai(y) and hence yi /∈ coϕi(y). On the other hand, if y ∈ Y \ Wi , then yi /∈ Hi . By (iii)
and the convexity of Ti(y), we have yi /∈ coϕi(y). Hence for each i ∈ I , yi /∈ coϕi(y) for
all y = (yi)i∈I ∈ Y . It is easy to see that for each i ∈ I and zi ∈ Yi ,

ϕ−
i (zi) = [T −

i (zi) ∩ A−
i (zi)] ∪ [(Y \ Wi) ∩ T −

i (zi)].
Thus, from our hypothesis, ϕ−

i (zi) is open in Y for each (i, zi) ∈ I × Yi . By (v), there exist
a nonempty compact subset K of Y and a nonempty compact convex subset Mi of Yi for
each i ∈ I such that for each y ∈ Y \ K there exist j ∈ I , such that Mj ∩ ϕj (y) �= ∅.
Applying Theorem 2.1, there exists v ∈ Y such that ϕi(v) = ∅ for all i ∈ I . If v /∈ Wi , then
∅ �= Ti(v) = ϕi(v) = ∅, which leads to a contradiction. Therefore, v ∈ Wi and yi /∈ Ai(v)

for all yi ∈ Ti(v). The proof is completed. ��
Corollary 3.1 Let I be any index set. For each i ∈ I , let Xi be a nonempty subset of a t.v.s.
Ei , Yi be a nonempty closed convex subset of a Hausdorff t.v.s. Vi , Ui and Zi be real t.v.s.
Let X = ∏

i∈I Xi and Y = ∏
i∈I Yi . For each i ∈ I , let Ci : Y � Ui be a multivalued

map with nonempty values, Di : Y � Zi be a closed multivalued map such that Di(x)

is a nonempty convex cone for each x ∈ X, Fi : X × Y � Ui and Gi : Y × Yi � Zi

be multivalued maps with nonempty values and Ti : Y � Yi be a multivalued map with
nonempty convex values. Let u ∈ X. For each i ∈ I , let Wi = {y ∈ Y : Fi(u, y) ⊆ Ci(y)},
Hi = {yi ∈ Yi: Fi(u, y) ⊆ Ci(y), for y = (yi)i∈I ∈ Y }. For each i ∈ I , suppose that

(i) Wi is a nonempty closed subset of Y ;
(ii) for each y = (yi)i∈I ∈ Y , Gi(y, yi) ⊆ Di(y);

(iii) for each y ∈ Y , Ti(y) ⊆ Hi and for each zi ∈ Yi , T −
i (zi) is open in Y ;

(iv) for each y ∈ Y , Gi(y, ·) is Di(y)-quasiconvex and for each zi ∈ Yi , Gi(·, zi) is l.s.c.;
(v) there exist a nonempty compact subset K of Y and a nonempty compact convex subset

Mi of Yi for each i ∈ I such that for each y ∈ Y \ K there exist j ∈ I and
zj ∈ Mj ∩ Tj (y) such that Gj(y, zj ) � Dj(y).

Then there exists v ∈ Y such that for each i ∈ I , Fi(u, v) ⊆ Ci(v) and Gi(v, yi) ⊆ Di(v)

for all yi ∈ Ti(v).

Proof For each i ∈ I , let Ai : Y � Yi be defined by

Ai(y) = {zi ∈ Yi : Gi(y, zi) � Di(y)}.
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We first show that for each (i, zi) ∈ I × Yi , A−
i (zi) is open in Y . Let y ∈ cl(Y\A−

i (zi)).
Then there exists a net {yα}α∈� in Y\A−

i (zi) such that yα → y. Thus we have Gi(yα, zi) ⊆
Di(yα). By the closedness of Y , y ∈ Y . Also, we obtain Gi(y, zi) ⊆ Di(y). Indeed, for any
w ∈ Gi(y, zi), since Gi(·, zi) is l.s.c. at y and yα → y, by Lemma 2.1, there exists a subnet
{yαλ}λ∈� of {yα} and a net {wλ}λ∈� with wλ → w such that wλ ∈ Gi(yαλ, zi) ⊆ Di(yαλ)

for all λ ∈ �. Since Di is closed, we have w ∈ Di(y). Thus, Gi(y, zi) ⊆ Di(y). Therefore,
y ∈ Y\A−

i (zi) and hence A−
i (zi) is open in Y . Next, we claim that for each (i, y) ∈ I × Y ,

Ai(y) is convex. Let ai , bi ∈ Ai(y). Then Gi(y, ai) � Di(y) and Gi(y, bi) � Di(y). By

the convexity of Yi , e
(λ)
i := λai + (1 − λ)bi ∈ Yi for all λ ∈ [0, 1]. Suppose to the contrary

that there exists λ0 ∈ (0, 1) such that Gi(y, e
(λ0)
i ) ⊆ Di(y). By the Di(y)-quasiconvexity of

Gi(y, ·), either

Gi(y, ai) ⊆ Gi(y, e
(λ0)
i ) + Di(y) ⊆ Di(y)

or

Gi(y, bi) ⊆ Gi(y, e
(λ0)
i ) + Di(y) ⊆ Di(y).

This leads to a contradiction. Hence for each (i, y) ∈ I × Y , Ai(y) is convex. Therefore, all
the conditions of Theorem 3.1 are satisfied and the conclusion follows from Theorem 3.1. ��

Using the same argument in the proof of Corollary 3.1, we have the following result.

Lemma 3.1 Let X be a t.v.s. and U be a real t.v.s. Let F : X×X � U be a multivalued map
with nonempty values and C: X � U be a closed multivalued map with nonempty values.
Let u ∈ X. If there exists w = w(u) ∈ X such that F(u,w) ⊆ C(w) and F(u, ·) is l.s.c.,
then W = {x ∈ X : F(u, x) ⊆ C(x)} is a nonempty closed subset of X.

Note that R
+ := [0,∞) and R

− := (−∞, 0] are closed convex cones in (−∞,∞]. From
Lemma 3.1 and Corollary 3.1, we have the following result.

Corollary 3.2 Let I be any index set. For each i ∈ I , let Xi be a nonempty subset of a t.v.s.
Ei , Yi be a nonempty closed convex subset of a Hausdorff t.v.s. Vi . Let X = ∏

i∈I Xi and
Y = ∏

i∈I Yi . For each i ∈ I , let Fi : X × Y � (−∞,∞] and Gi : Y × Yi � (−∞,∞]
be multivalued maps with nonempty values and Ti : Y � Yi be a multivalued map with
nonempty convex values, and let Hi = {yi ∈ Yi : Fi(u, y) ⊆ R

−, for y = (yi)i∈I ∈ Y }. Let
u ∈ X. For each i ∈ I , suppose that there exists w = w(i, u) ∈ Y such that Fi(u,w) ⊆ R

−.
For each i ∈ I , suppose that

(i) F(u, ·) is l.s.c.;
(ii) for each y = (yi)i∈I ∈ Y , Gi(y, yi) ⊆ R

+;
(iii) for each y ∈ Y , Ti(y) ⊆ Hi and for each zi ∈ Yi , T −

i (zi) is open in Y ;
(iv) for each y ∈ Y , Gi(y, ·) is R

+-quasiconvex and for each zi ∈ Yi , Gi(·, zi) is l.s.c.;
(v) there exist a nonempty compact subset K of Y and a nonempty compact convex

subset Mi of Yi for each i ∈ I such that for each x ∈ Y\K there exist j ∈ I and
zj ∈ Mj ∩ Tj (y) such that Gj(y, zj ) � R

+.

Then there exists v ∈ Y such that sup Fi(u, v) ≤ 0 and inf Gi(v, Ti(v)) ≥ 0 for all i ∈ I .

The following result is a powerful tool to establish variants of EVP in a Hausdorff t.v.s in
Sect. 4.
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Theorem 3.2 Let X be a nonempty subsets of a t.v.s. E and Y be a Hausdorff t.v.s. Let
f : X × Y → (−∞,∞] and g : Y × Y → (−∞,∞] be functions. Let u ∈ X. Suppose that

(i) W = {y ∈ Y : f (u, y) ≤ 0} is a nonempty closed convex subset of Y ;
(ii) for each y ∈ Y , g(y, y) ≥ 0;

(iii) for each x ∈ Y , g(x, ·) is quasiconvex and for each y ∈ Y , g(·, y) is u.s.c.;
(iv) there exist a nonempty compact subset K of Y and a nonempty compact convex subset

M of Y such that for each y ∈ Y \ K there exists z ∈ M such that f (u, z) ≤ 0 and
g(y, z) < 0.

Then there exists v ∈ Y such that f (u, v) ≤ 0 and g(v, y) ≥ 0 for all y ∈ W .

Proof Let U = Z = (−∞,∞] and C, D : Y � (−∞,∞] be defined by C(y) = R
− and

D(y) = R
+ for all y ∈ Y . Let T : Y � Y be defined by

T (y) = W for all y ∈ Y

⇐⇒ T −(z) =
{

Y, if z ∈ W

∅, if z ∈ Y \ W.

and A : Y � Y defined by

A(x) = {y ∈ Y : g(x, y) < 0}.
Then T −(z) is open in Y for all z ∈ Y . By (i), T (y) = W is a nonempty closed convex
subset of Y for all y ∈ Y . By (ii), g(y, y) ∈ D(y) for each y ∈ Y . By (iii), for each y ∈ Y ,
A−(y) = {x ∈ Y : g(x, y) < 0} is open in Y and for each x ∈ Y , A(x) is convex. Therefore,
all the conditions of Theorem 3.1 are satisfied and the conclusion follows from Theorem 3.1.

��

4 Variants of EVP in Hausdorff t.v.s.

In this section, we first introduce the concepts of �-function and quasi-distance.

Definition 4.1 Let X be a t.v.s. A function p : X × X → (−∞,∞] is called

(a) a �-f unction if the following are satisfied:
(L1) p(x, x) ≥ 0 for all x ∈ X;
(L2) for any x ∈ X, p(x, ·) is convex;
(L3) for any y ∈ X, p(·, y) is u.s.c.

(b) a quasi-distance on X if the following are satisfied:
(QD1) p(x, x) ≥ 0 for all x ∈ X;
(QD2) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(QD3) for any x ∈ X, p(x, ·) is convex and l.s.c.;
(QD4) for any y ∈ X, p(·, y) is u.s.c.

Obviously, a quasi-distance is a �-function, but the converse is not true. It is easy to see
that if p1 and p2 are quasi-distances (resp. �-functions) and α ≥ 0, then αp1 and p1 + p2

are quasi-distances (resp. �-functions).

Example A

(a) Let X be a Hausdorff t.v.s. and f : X → (−∞,∞] be a l.s.c. and convex function.
Then, the function p : X × X → (−∞,∞] defined by p(x, y) = f (y) − f (x) is a
quasi-distance on X.
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(b) Let H be an inner product space equipped with a inner product 〈·, ·〉 and T : H → H

be a continuous map. Then, the function p : X × X → [0,∞) defined by p(x, y) =
〈y − x, T x〉 is a �-function.

(c) Let (X, ‖·‖) be a normed vector space.
(1) The function p : X × X → [0,∞) defined by

p(x, y) = a ‖x − y‖ + f (x) + g(y)

is a quasi-distance on X, where a ≥ 0, f : X → [0,∞) is a u.s.c. function and
g : X → [0,∞) is a convex and l.s.c. function. In particular, any constant function
on X × X, the function p : X × X → [0,∞) defined by p(x, y) = ‖x‖ + ‖y‖
and the metric d(x, y) = ‖x − y‖ are quasi-distances on X;

(2) The function p : X × X → [0,∞) defined by

p(x, y) = max{‖T x − y‖ , ‖T x − Ty‖}
is a quasi-distance on X, where T : X → X is an affine continuous map. Indeed,
(QD1) holds clearly. For any x, y, z ∈ X, since

p(x, z) = max{‖T x − z‖ , ‖T x − T z‖}
≤ max{‖T x − y‖ , ‖T x − Ty‖} + max{‖Ty − z‖ , ‖Ty − T z‖}
= p(x, y) + p(y, z),

this shows that (QD2) holds. Since

p(x, y) = max{‖T x − y‖ , ‖T x − Ty‖}
= |‖T x − y‖ − ‖T x − Ty‖| + ‖T x − y‖ + ‖T x − Ty‖

2

and by the continuity of T and ‖·‖, p : X ×X → [0,∞) is a continuous function.
Hence (QD4) holds. For any x ∈ X, we claim that p(x, ·) is convex. Let y1,
y2 ∈ X and λ ∈ [0, 1]. Since T is affine, we have

p(x, λy1 + (1 − λ)y2)

≤ max{λ ‖T x − y1‖ + (1 − λ) ‖T x − y2‖ ,

λ ‖T x − Ty1‖ + (1 − λ) ‖T x − Ty2‖}
≤ λp(x, y1) + (1 − λ)p(x, y2).

So (QD3) holds. Therefore p is a quasi-distance on X.

The following result is a variant of EVP for quasi-distances in a Hausdorff t.v.s. It is quite
different from EVP in metric spaces or quasi-metric spaces.

Theorem 4.1 Let X be a Hausdorff t.v.s. Let f : X → (−∞,∞] be a l.s.c. and convex
function and p : X × X → (−∞,∞] be a quasi-distance. Let u ∈ X with p(u, u) = 0
and ε > 0. Suppose that there exist a nonempty compact subset K of X and a nonempty
compact convex subset M of X such that for each y ∈ X \ K there exists z ∈ M such that
εp(u, z) ≤ f (u) − f (z) and εp(y, z) < f (y) − f (z). Then there exists v ∈ X such that

(i) εp(u, v) ≤ f (u) − f (v);
(ii) εp(v, x) ≥ f (v) − f (x) for all x ∈ X.
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Proof Since p is a quasi-distance, εp is also a quasi-distance. Define h, g : X × X →
(−∞,∞] by

h(x, y) = g(x, y) = εp(x, y) − f (x) + f (y).

By the lower semi-continuity and the convexity of f and p(u, ·),
W := {x ∈ X : h(u, x) ≤ 0} = {x ∈ X : εp(u, x) ≤ f (u) − f (x)}

is a nonempty closed convex subsets of X. Clearly, g(x, x) ≥ 0 for each x ∈ X. By the
upper semi-continuity of −f and p(·, y), the function x → g(x, y) is u.s.c. for all y ∈ X.
By the convexity of f and p(x, ·), the function y → g(x, y) is convex for all x ∈ X. By our
hypothesis, there exist a nonempty compact subset K of X and a nonempty compact convex
subset M of X such that for each y ∈ X \ K there exists z ∈ M such that h(u, z) ≤ 0 and
g(y, z) < 0. Therefore, all the conditions of Theorem 3.2 are satisfied. Thus there exists
v ∈ X such that

(i) εp(u, v) ≤ f (u) − f (v);
(ii) εp(v, x) ≥ f (v) − f (x) for all x ∈ W .

For any x ∈ X \ W , since

ε[p(u, v) + p(v, x)] ≥ εp(u, x)

> f (u) − f (x)

≥ εp(u, v) + f (v) − f (x),

it follows that εp(v, x) > f (v) − f (x) for all x ∈ X \ W . Hence εp(v, x) ≥ f (v) − f (x)

for all x ∈ X. The proof is completed. ��
Remark 4.1

(a) Using Example A and Theorem 4.1, we can obtain several different variants of EVP in
different spaces.

(b) Our variant of EVP (Theorem 4.1) is quite different from [7, 8, 14–19, 21, 27–29,
32–34]. Theorem 4.1 is comparable to the original EVP in the following aspects:
(1) In Theorem 4.1, the functions we considered are defined on a Hausdorff t.v.s., but

in the original EVP, the functions are defined on a complete metric space;
(2) In the original EVP, the function f is assumed to be proper, l.s.c. and bounded

from below, but in Theorem 4.1, f is not assumed to be proper and bounded from
below. We only assume that f : X → (−∞,∞] is a l.s.c. and convex function;

(3) In Theorem 4.1, we use quasi-distances instead of metrics (even other weakly
(quasi-)metrics).

The following results are variants of EVP for �-functions in a Hausdorff t.v.s.

Theorem 4.2 Let X be a Hausdorff t.v.s. Let f : X → (−∞,∞] be a l.s.c. and convex
function, p : X × X → (−∞,∞] be a �-function and ε > 0. Suppose that there exist a
nonempty compact subset K of X and a nonempty compact convex subset M of X such that
for each y ∈ X \ K there exists z ∈ M such that εp(y, z) < f (y) − f (z). Then, there exists
v ∈ X such that εp(v, x) ≥ f (v) − f (x) for all x ∈ X.

Proof Define k : X × X → (−∞,∞] by k(x, y) = 0 for all (x, y) ∈ X × X. Then for any
x ∈ X, W := {y ∈ X : k(x, y) ≤ 0} = X. Let g : X × X → (−∞,∞] be the same as in
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Theorem 4.1. Using the same argument in the proof of Theorem 4.1, one can verify that all
the conditions of Theorem 3.2 are satisfied. By Theorem 3.2, there exists v ∈ X such that
εp(v, x) ≥ f (v) − f (x) for all x ∈ X. ��
Remark 4.2 Although a quasi-distance is a �-function, Theorem 4.1 is not a special case of
Theorem 4.2 because the conclusion (i) in Theorem 4.1 can’t be deduced by Theorem 4.2.

Theorem 4.3 Let X be a Hausdorff t.v.s. Let f : X → (−∞,∞] be a l.s.c. and convex
function, p : X × X → (−∞,∞] be a �-function and ε > 0. Let u ∈ X. Suppose that
there exist a nonempty compact subset K of X and a nonempty compact convex subset
M of X such that for each y ∈ X \ K there exists z ∈ M such that f (z) ≤ f (u) and
εp(y, z) < f (y) − f (z). Then, there exists v = v(u) ∈ X such that

(i) f (v) ≤ f (u);
(ii) εp(v, x) ≥ f (v) − f (x) for all x ∈ {z ∈ X : f (z) ≤ f (u)}.
Proof Let k′ : X × X → (−∞,∞] be defined by k′(x, y) = f (y) − f (x) and let g:
X ×X → (−∞,∞] be the same as in Theorem 4.1, then, by the lower semi-continuity and
the convexity of f ,

W := {z ∈ X : k′(u, z) ≤ 0} = {z ∈ X : f (z) ≤ f (u)}
is a nonempty closed convex subsets of X. Hence, the conclusion follows from Theorem 3.2.

��
The following theorem is a special case of Theorem 5.1 in [24].

Theorem 4.4 Let X be a Hausdorff t.v.s. and p: X × X → (−∞,∞] be a �-function.
Suppose that there exist a nonempty compact subset K of X and a nonempty compact convex
subset M of X such that for each y ∈ X \ K there exists z ∈ M such that p(y, z) < 0. Then,
there exists v ∈ X such that p(v, x) ≥ 0 for all x ∈ X.

Proof Take c ∈ R and let ε = 1. Define f: X → (−∞,∞] by f (x) = c for all x ∈ X.
Then f is a l.s.c. and convex function. By Theorem 4.2, there exists v ∈ X such that
p(v, x) ≥ f (v) − f (x) = 0 for all x ∈ X. ��
Remark 4.3 It is easy to see that Theorems 4.2 and 4.4 are equivalent.

5 Equivalent formulations of EVP

Definition 5.1 Let X be a t.v.s., f : X → (−∞,∞] and p: X × X → (−∞,∞] are
functions. We call that X satisfies (p, f )-condition if there exist a nonempty compact
subset K of X and a nonempty compact convex subset M of X such that for each y ∈ X \ K

there exists z ∈ M such that p(y, z) < f (y) − f (z).
Below, unless otherwise specified, we shall assume that X is a Hausdorff t.v.s., f: X →

(−∞,∞] is a l.s.c. and convex function,p: X×X → (−∞,∞] is a �-function andX satisfies
(p, f )-condition. In this section, we establish some existence theorems in Hausdorff t.v.s.
equipped with (p, f )-condition and prove that these theorems are equivalent to Theorem 4.2.

Theorem 5.1 (Common fixed point theorem for a family of multivalued maps) Let I be an
index set. For each i ∈ I , let Ti : X � X be a multivalued map with nonempty values such
that for each (i, x) ∈ I × X with x /∈ Ti(x), there exists y = y(x, i) ∈ X with y �= x such
that p(x, y) < f (x) − f (y). Then there exists x0 ∈ X such that x0 ∈ ⋂

i∈I Ti(x0). That is,
{Ti}i∈I has a common fixed point in X.
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Theorem 5.2 (Common fixed point theorem for a family of single-valued maps) Let I be
an index set. For each i ∈ I , suppose that Ti : X → X is a map satisfying

p(x, Tix) < f (x) − f (Tix)

for all x �= Ti(x). Then there exists x0 ∈ X such that Ti(x0) = x0 for all i ∈ I .

Theorem 5.3 (Maximal element theorem for a family of multivalued maps) Let I be an index
set. For each i ∈ I , let Ti : X � X be a multivalued map. Suppose that for each (x, i) ∈ X×I

with Ti(x) �= ∅, there exists y = y(x, i) ∈ X with y �= x such that p(x, y) < f (x) − f (y).
Then there exists x0 ∈ X such that Ti(x0) = ∅ for all i ∈ I.

Theorem 5.4 Theorem 4.2, Theorems 5.1, 5.2 and 5.3 are equivalent.

Proof

(1). “ Theorem 4.2⇐⇒ Theorem 5.1”.
(⇒) Applying Theorem 4.2, there exists v ∈ X such that p(v, x) ≥ f (v) − f (x) for
all x ∈ X. We want to show that v ∈ ⋂

i∈I Ti(v). If v /∈ Ti0v for some i0 ∈ I , then,
by hypothesis, there exists w(v, i0) ∈ X with w(v, i0) �= v such that p(v,w(v, i0)) <

f (v) − f (w(v, i0)) ≤ p(v,w(v, i0)), which leads to a contradiction. Hence v ∈ Ti(v)

for all i ∈ I and v is a common fixed point of {Ti}i∈I .
(⇐) Suppose that for each x ∈ X, there exists y ∈ X with y �= x such that p(x, y) <

f (x) − f (y). Then for each x ∈ X, we can define a multivalued map T : X � X \ {∅}
by

T (x) = {y ∈ X : p(x, y) < f (x) − f (y)}.
Clearly, x /∈ T (x) for all x ∈ X. By Theorem 5.1, T have a fixed point v in X, i.e.,
v ∈ T (v). Hence we obtain a contradiction and Theorem 4.2 holds.

(2). “ Theorem 5.1⇐⇒Theorem 5.2”.
(⇒) Under the assumption of Theorem 5.2, for each i ∈ I , let Gi : X � X be defined
by Gi(x) = {Ti(x)}. Then for each (i, x) ∈ I ×X with x /∈ Gi(x), we have x �= Ti(x).
By hypothesis, p(x, Tix) < f (x) − f (Tix) and hence, by Theorem 5.1, there exists
v ∈ X such that v ∈ ⋂

i∈I Gi(v) or Tiv = v for all i ∈ I . This shows that Theorem 5.1
implies Theorem 5.2.
(⇐) Under the assumption of Theorem 5.1, for each (i, x) ∈ I × X with x /∈ Ti(x),
there exists y(x, i) ∈ X with y(x, i) �= x such that p(x, y(x, i)) < f (x)− f (y(x, i)).
Then one can define gi : X → X by

gi(x) =
{

x, if x ∈ Ti(x)

y(x, i), if x /∈ Ti(x).

Hence gi is a selfmap of X into X satisfying p(x, gi(x)) < f (x) − f (gi(x)) for all
x �= gi(x). By Theorem 5.2, there exists v ∈ X such that v = gi(v) ∈ Ti(v) for all
i ∈ I . This shows that Theorem 5.2 implies Theorem 5.1.

(3). “ Theorem 4.2⇐⇒ Theorem 5.3”.
(⇒) Applying Theorem 4.2, there exists v ∈ X such that p(v, x) ≥ f (v) − f (x) for
all x ∈ X. We claim that Ti(v) = ∅ for all i ∈ I . Suppose to the contrary that there
exists i0 ∈ I such that Ti0(v) �= ∅. By hypothesis, there exists w = w(v, i0) ∈ X with
w �= v such that p(v,w) < f (v) − f (w). Then, it leads to a contradiction. Therefore
Ti(v) = ∅ for all i ∈ I .
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(⇐) Suppose that for each x ∈ X, there exists y ∈ X with y �= x such that p(x, y) <

f (x) − f (y). For each x ∈ X, define a multivalued map T : X � X \ {∅} by

T (x) = {y ∈ X : p(x, y) < f (x) − f (y)}.
Then T (x) �= ∅ for all x ∈ X. But applying Theorem 5.3, there exists x0 ∈ X such that
T (x0) = ∅. This is a contradiction. ��

The following minimization theorem is immediate from Theorem 4.2.

Theorem 5.5 (Minimization theorem) Suppose that for any x ∈ X with f (x) > infz∈X f (z)

there exists y ∈ X with y �= x such that p(x, y) < f (x) − f (y) holds. Then there exists
x0 ∈ X such that f (x0) = infz∈X f (z).

Proof Applying Theorem 4.2, there exists v ∈ X such that p(v, x) ≥ f (v) − f (x) for all
x ∈ X. We claim that f (v) = infz∈X f (z). Suppose to the contrary that f (v) > infx∈X f (x).
By our assumption, there exists y = y(v) ∈ X with y �= v such that p(v, y) < f (v)−f (y) ≤
p(v, y), which leads to a contradiction. Therefore f (v) = infz∈X f (z). ��
Remark 5.1

(a) Review the proof of Theorem 5.4, one can obtain a v ∈ X such that
(1) p(v, x) ≥ f (v) − f (x) for all x ∈ X;
(2) v ∈ Ti(v) (Ti is defined as in Theorem 5.1) or Ti(v) = v (Ti is defined as in

Theorem 5.2) for all i ∈ I ;
(3) Ti(v) = ∅ (Ti is defined as in Theorem 5.3) for all i ∈ I .

(b) Theorem 4.2 and Theorem 5.5 are equivalent if one further adds the condition “p(x, y) ≥
0 for all x, y ∈ X”. Indeed, it suffices to show that Theorem 5.5 implies Theorem 4.2.
Suppose that for each x ∈ X, there exists y ∈ X with y �= x such that p(x, y) < f (x)−
f (y). Then, by Theorem 5.5, there exists v ∈ X such that f (v) = infx∈X f (x). By our
hypothesis, there exists w ∈ X with w �= v such that p(v,w) < f (v) − f (w) ≤ 0,
which leads to a contradiction.

6 Some applications

Applying Theorem 3.1, we have the following existence theorem of systems of semi-infinite
problem.

Theorem 6.1 Let I be any index set. For each i ∈ I , let Xi be a nonempty subset of a t.v.s.
Ei , Yi be a nonempty closed convex subset of a Hausdorff t.v.s. Vi. Let X = ∏

i∈I Xi and
Y = ∏

i∈I Yi . For each i ∈ I , let fi : X × Y → (−∞,∞] and gi : Y × Yi → (−∞,∞]
be functions, Ti : Y � Yi be a multivalued map with nonempty convex values, and let
Hi = {yi ∈ Yi : fi(u, y) ≤ 0, for y = (yi)i∈I ∈ Y }. Let u ∈ X. For each i ∈ I , suppose that
there exists w = w(i, u) ∈ Y such that fi(u,w) ≤ 0. For each i ∈ I , suppose that

(i) fi(u, ·) is l.s.c.;
(ii) for each y = (yi)i∈I ∈ Y , gi(y, yi) ≥ 0;

(iii) for each y ∈ Y , Ti(y) ⊆ Hi and for each zi ∈ Yi , T −
i (zi) is open in Y ;

(iv) for each y ∈ Y , gi(y, ·) is quasiconvex and gi: Y × Yi → (−∞,∞] is u.s.c.;
(v) there exist a nonempty compact subset K of Y and a nonempty compact convex subset

Mi of Yi for each i ∈ I such that for each y ∈ Y\K there exist j ∈ I and zj ∈
Mj ∩ Tj (y) such that gj (y, zj ) < 0.
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If h: Y � Z0 is an u.s.c. multivalued map with nonempty compact values, where Z0 is
a real t.v.s. ordered by a proper closed convex cone C in Z0, then there exists an optimal
solution to the following problem (P ):

MinCh(y)

object to y ∈ Y, fi(u, y) ≤ 0 and gi(y, zi) ≥ 0 (1)

for all zi ∈ Ti(y) and for all i ∈ I .

Proof For each i ∈ I , let

Ni = {y ∈ Y : fi(u, y) ≤ 0 and gi(y, zi) ≥ 0 for all zi ∈ Ti(y)}.
Then Ni is closed in Y for all i ∈ I . Indeed, for each i ∈ I , let yi ∈ clNi . Then there
exists a net {yα

i }α∈� in Ni such that yα
i → yi . Hence fi(u, yα

i ) ≤ 0 and gi(y
α
i , zi) ≥ 0

for all zi ∈ Ti(y
α
i ). Let ai ∈ Ti(y). Since T −

i (zi) is open in Y for each zi ∈ Yi , Ti is l.s.c.
Hence there exists a net {aα

i }α∈� with aα
i → ai such that aα

i ∈ Ti(y
α
i ). So fi(u, yα

i ) ≤ 0
and gi(y

α
i , aα

i ) ≥ 0. By (i), we have fi(u, yi) ≤ 0. By (iv), we have gi(yi, ai) ≥ 0. Hence
yi ∈ Ni and Ni is a closed set in Y . Let N = ∩i∈INi . Then N is closed in Y . Applying
Theorem 3.1, N �= ∅. By (v), it is easy to see that N ⊆ K , where K is a nonempty compact
subset of Y in condition (v). Hence N is a nonempty compact subset of Y . Since h : Y � Z0

is an u.s.c. multivalued map with nonempty compact values, it follows from Lemma 2.3 that
h(N) is compact. Then by Lemma 2.2 that MinCh(N) �= ∅. That is there exists a solution to
the problem (P). The proof is completed. ��
Theorem 6.2 In Theorem 6.1, if we assume that h : Y → (−∞,∞] is a l.s.c. function, then
there exists an optimal solution to the problem (P) as in Theorem 6.1.

Proof Let N be the same as in the proof of Theorem 6.1. By the lower semi-continuity of
h and the compactness of N , there exists v ∈ N such that h(v) = min h(N). The proof is
completed. ��
Definition 6.1 Let X be a Hausdorff t.v.s. and p : X × X → (−∞,∞] be a quasi-distance.
The (p, ε)-f lower petal associated with ε ∈ (0,∞) and a, b ∈ X (in short, GPε[a, b]) is
the closed set

GPε[a, b] = {x ∈ X : εp(a, x) ≤ p(b, a) − p(b, x)}.
We denote

P(ε, a, b) = {x ∈ X : εp(a, x) < p(b, a) − p(b, x)}.
Obviously, GPε[a, b] and P(ε, a, b) are convex and if the quasi-distance p with p(a, a) =

0, then GPε[a, b] is nonempty.

Theorem 6.3 (New variant of flower petal theorem) Let X be a Hausdorff t.v.s. Let a, b ∈ X

and ε > 0. Let p : X × X → (−∞,∞] be a quasi-distance with p(a, a) = 0. Suppose that
there exist a nonempty compact subset K of X and a nonempty compact convex subset M of
X such that for each y ∈ X \ K there exists z ∈ M such that εp(u, z) ≤ p(b, u) − p(b, z)

and εp(y, z) < p(b, y)−p(b, z). Then there exists v ∈ GPε[a, b] such that P(ε, v, b) = ∅.

Proof Define f : X → (−∞,∞] by f (x) = p(b, x). Then f is a l.s.c. and convex function.
By Theorem 4.1, there exists v ∈ X such that

(1) εp(a, v) ≤ f (a) − f (v);
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(2) εp(v, x) ≥ f (v) − f (x) for all x ∈ X.

By (1), we have v ∈ GPε[a, b]. By (2), we obtain εp(v, x) ≥ p(b, v) − p(b, x) for all
x ∈ X. Hence x /∈ P(ε, v, b) for all x ∈ X or P(ε, v, b) = ∅. The proof is completed. ��

The following minimax theorem is established by Theorem 4.2.

Theorem 6.4 (Minimax theorem) Let X be a Hausdorff t.v.s. and p : X × X → (−∞,∞]
be a �-function. Let F : X × X → (−∞,∞] be a function satisfying for each y ∈ X, the
function x → F(x, y) is l.s.c. and convex. Suppose that

(i) for each x ∈ X with {u ∈ X: F(x, u) > infa∈X F(a, u)} �= ∅, there exists y = y(x) ∈ X

with y �= x such that

p(x, y) < F(x,w) − F(y,w) for all w ∈ X;
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset

M of X such that for each y ∈ X \K there exists z ∈ M such that p(y, z) < F(y,w)−
F(z,w) for all w ∈ X.

Then infx∈X supy∈X F(x, y) = supy∈X infx∈X F(x, y).

Proof Applying Theorem 4.2, for each z ∈ X, there exists v(z) ∈ X such that p(v(z), x) ≥
F(v(z), z)−F(x, z) for all x ∈ X. Let γ = supy∈X infx∈X F(x, y). Then infx∈X F(x, y) ≤
γ for all y ∈ X. We first show that

⋂
y∈X{x ∈ X : F(x, y) ≤ γ } �= ∅. Suppose to the contrary

that
⋂

y∈X{x ∈ X: F(x, y) ≤ γ } = ∅. Then v(z) /∈ ⋂
y∈X{x ∈ X: F(x, y) ≤ γ } for all

z ∈ X. Hence there exists w0 = w(v(z)) ∈ X such that F(v(z), w0) > infa∈X F(a,w0) or
w0 ∈ {u ∈ X: F(v(z), u) > infa∈X F(a, u)}. So, {u ∈ X: F(v(z), u) > infa∈X F(a, u)} �=
∅ for all z ∈ X. Hence for each z ∈ X, there exists y = y(v(z)) ∈ X with y �= v(z)

such that p(v(z), y) < F(v(z), w) − F(y,w) for all w ∈ X. This leads to a contradiction.
Hence

⋂
y∈X{x ∈ X : F(x, y) ≤ γ } �= ∅. Let c ∈ ⋂

y∈X{x ∈ X : F(x, y) ≤ γ }. Then,
supy∈X F(c, y) ≤ γ . It follows that

inf
x∈X

sup
y∈X

F(x, y) ≤ sup
y∈X

F(c, y) ≤ sup
y∈X

inf
x∈X

F(x, y).

Since supy∈X infx∈X F(x, y) ≤ infx∈X supy∈X F(x, y) is always true, we show that
infx∈X supy∈X F(x, y) = supy∈X infx∈X F(x, y). ��
Example B Let X = [α, β] ⊂ R with the metric d(x, y) = |x − y|, where β > α > 0. Let
F : X × X → R be defined by F(x, y) = x2 − y2, then it is easy to see that for each y ∈ X,
the function x → F(x, y) is a l.s.c. and convex function on X and infx∈X supy∈X F(x, y) =
supy∈X infx∈X F(x, y) = 0. Note that for each x ∈ (α, β], F(x, y) = x2 − y2 > α2 − y2 =
infa∈X F(a, y) for all y ∈ X. Hence X = {u ∈ X : F(x, u) > infa∈X F(a, u)} �= ∅ for all
x ∈ (α, β]. For any x, y ∈ (α, β] with x > y, we have

d(x, y) = x − y <
1

2α
(x2 − y2) = 1

2α
(F (x, u) − F(y, u))

for all u ∈ X. Define a �-function p : X × X → R by p(x, y) = 2αd(x, y). Thus p(x, y) <

F(x, u) − F(y, u) for all x, y ∈ (α, β] with x > y and all u ∈ X. By Theorem 6.4, we also
show that infx∈X supy∈X F(x, y) = supy∈X infx∈X F(x, y).

Applying Theorem 4.4, we establish a generalization of Schauder’s fixed point theorem.
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Theorem 6.5 Let (X, ‖·‖) be a normed vector space and T : X → X be a continuous map.
Suppose that there exist a nonempty compact subset K of X and a nonempty compact convex
subset M of X such that for each y ∈ X \ K there exists z ∈ M such that ‖z − Ty‖ <

‖y − Ty‖. Then T has a fixed point in X.

Proof Define p : X × X → (−∞,∞] by

p(x, y) = ‖y − T x‖ − ‖x − T x‖ .

Then it is easy to see that p is a �-function. By Theorem 4.4, there exists v ∈ X such that
p(v, x) ≥ 0 or ‖x − T v‖ ≥ ‖v − T v‖ for all x ∈ X. Since T v ∈ X, we have

0 ≤ ‖v − T v‖ ≤ ‖T v − T v‖ = 0.

This implies that T v = v and v is a fixed point of T . ��
Corollary 6.1 (Schauder’s fixed point theorem) Let X be a compact convex subset of a
normed vector space (E, ‖·‖) and T : X → X be a continuous map. Then T has a fixed point
in X.
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